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Similarity reductions of partial differential equations 
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Istituto di Enetgetica, Facolti di Ingegneria, Univeraiti di Perugia, 06100 Perugia, Italy 

Received 31 July 1991, in final form 2 January 1992 

Abstract. We determine the relation between two methods of reduction, the similarity 
reduction method using non-classical symmetry groups, and the direct approach used by 
Clarkson and Kruskal. We prove that the solutions which are obtained by similarity in 
correspondence to non-classical groups constitute a larger family than the one obtained 
by the method of Clarkson and Kruskal. The two procedures are equivalenr only if the 
generaton ((x. 1, U ) .  T(X, t, U). ~ ( x ,  1. U )  of the non-classical groups are such that (17 is 
independent of U. To explain these results, we prove the existence of families of solutions 
of the Burgers' equation which are found by means of non-classical symmetry reduction, 
and which cannot be determined via the general reduction form of Clarkson and Kruskal. 

1. Introduction 

The similarity reduction of a partial differential equation is the procedure by which it 

variables appear. It is obtained by means of a suitable choice of the variables and of 
the unknown function. Hence, for n = 2, the similarity reduction transforms a partial 
differential equation into an ordinary differential equation and makes possible the 
determination of a class of solutions of the given partial differential equation depending 
on arbitrary constants. 

A classical method to obtain similarity reductions is to use the symmetry properties 
of the equation: for any group of point symmetries admitted by the equation, it is 
possible to define a similarity reduction. 

In [l], Clarkson and Kruskal (CK) propose a direct method to determine the 
similarity reduction for equations in two variables. It does not use techniques of group 
analysis and allows new classes of solutions for the Boussinesq equation to be found. 
With the same method, they also give the general reduction form for the Burgers' 
equation, the Kortweg-de Vries equation, and for the modified Kortweg-de Vries 
equation. Similarity reduction for a modified Boussinesq equation and for the BBM 
equation has been characterized by Clarkson in [Z] and [3]. 

In a study to determine the connection between the direct method of CK and the 
group analysis technique using the Boussinesq equation, Levi and Winternitz [4] 
noticed that the solutions given by the CK direct reduction procedure were exactly 
those solutions obtained as invariant solutions under the non-classical symmetry groups 
[ 5 ]  admitted by the equation. 

They thus established the equivalence, for the Boussinesq equation, between the 
direct approach of CK and the reduction procedure using non-classical symmetry 
groups. 
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Remarks on the relationship between the direct method and the non-classical 
symmetries are given also in 161. 

In this note, we discuss the general problem of the correspondence between the 
two procedures. 

The analysis given in [71 is essential. There, it has been noticed that the condition 
which characterizes the non-classical symmetries is the condition which establish the 
completeness of the system given by the differential equation and the invariance 
eqiiaiioii. Tnis iasi eqiiaiioii is aiso inierpreiabie as a ‘side condition‘, according to the 
definition of Olver and Rosenau [8]. 

In 171 an algorithm is proposed which characterizes all the weak symmetries for a 
partial differential equation. The invariant solutions under weak symmetries which are 
not non-classical are obtained via a compatible system of ordinary equations in the 
same variable, and not by means of a single ordinary reduction equation. Therefore 
these weak symmetries cannot be related to the reduction procedure of CK. Nevertheless 
they are a valid tool for determination of exact solutions [9]. 

From the results of [7], we recognize that the solutions given by the direct method 
of CK are always given as invariant solutions under non-classical symmetries. There 
can, however, be solutions, obtained by similarity reduction with non-classical sym- 
metries, which are not obtainable by means of the direct method of CK. 

To explain these results, we consider the Burgers’ equation and we determine 
non-classical groups and some corresponding similarity solutions. 

Using some non-classical symmetries we determine two families of similarity 
solutions that are not obtainable by the general similarity reduction form of CK. 

These solutions are also invariant for non-classical symmetries with time as the 
similarity variable. Therefore, we can also obtain these solutions via the special case 
of direct reduction (that is not included in the ansatz of CK), by means of which Lou 
[lo] obtains new similarity solutions of the Boussinesq equation. 

We point out that it is difficult to determine solutions for the Burgers’ equation 
using the Lou approach. Indeed it is not possible to characterize, as for the Boussinesq 
equation, the special form of reduction that allows the determination of the general 
ordinary reduction equation. 

2. Non-classical symmetry groups and completeness 

Let us describe, briefly, the Bluman-Cole method for determining the non-classical 
symmetry groups. We will limit the discussion to the case of one nth order partial 
differential equation, on a function of two variables u ( x ,  t): 

A(& 1, U, U,, U,, U,, U,,, up,, . . . 1 =O. (2.1) 

It is known that a classical group of point symmetries which leaves (2.1) invariant 
may be determined by means of the vector fields ([(x, t, U), T ( X ,  t, U). ~ ( x ,  1, U)) of its 
generators. They are defined by the relation 

Here pr:“’ indicates the nth proiongation of the transiormations group and it is 
expressible by the derivatives of the generators [6]. 

Having defined the generators of a symmetry group, the invariance relation 

I = [(x, t, U)U, + 7(x, t, u)u,  - v(x. I, U )  = 0 (2.3) 
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allows determination of the similarity variable and the form of the similarity solution, 
using the general integral of the characteristic system. 

The non-classical symmetry groups are defined as the transformation groups, which 
leave invariant the system X, given by (2.1), (2.3) and the differential consequences of 
(2.3), up to order n, 

DhkI = 0 h , k E N o , h + k = l  ,..., n - I .  (2.4) 
Dhk is the operator corresponding to h total derivatives with respect to the variable t 
and k total derivatives with respect to the variable x. 

Since this is identically 

(2.5) pr in) II,=,=O and pr'"'D,,II,=o:o,,,=a=O 

pr' ~'n(, = 0. 
the condition which characterizes the non-classical group generators is 

(i .6j 

This relation gives rise to the differential system (in general nonlinear) which defines 
the generators. With no loss of generality we can set T = 1 or T = 0. 

Another way to obtain (2.6) is by examining the compatibility of the system of 
equations X; that is, by looking for the constraints on 6, 7, T which force X to admit 
solutions. 

These constraints are deduced by imposing the Schwarz conditions on the deriva- 
tives of order n + 1 .  

As proved in [7], for the system X there is only one independent compatibility 
condition: once this condition (corresponding to the independence of one mixed 
derivative on the order of derivation) is satisfied, then the conditions of independence 
of all the other mixed derivatives are also verified. 

By direct computaiion it is possiiiie to see that the compatiiiiiiiy condition is 
satisfied, identically, as an algebraic consequence of X, if and only if (2.6) is verified. 

Hence (2.6) is the condition which characterizes the completeness of the system 
X, because it assures that any differential consequence of X is also an algebraic 
consequence. When it holds, there exist solutions for the system X. 

in ,  1 I 

3. Clarkson and K ~ s L a l ' s  direct method and non-classical groups 

The direct method proposed by CK consists in finding the similarity reduction of (2.1) 
in the form 

U(& t)' t, w ( z ( x ,  1 ) )  (3.1) 
and, therefore, in looking for a form of U and z, such that, by replacement of (3.1) 
in (2,1), one obtains a differential equation in w ( z ) .  Similarity solutions are obtained 
from (3.1) for U, z, and w values, which solve the equation (2.1). 

In order to analyse the relation between the direct method and group analysis, it 
is helpful to make the following observation. 

The vector fields .$(x, t, U). T ( X ,  I ,  U), ~ ( x ,  1, U), whose characteristic curves are the 
two-parameter iamiiy 

z(x, t )  = h (3.2) 
H ( x ,  1, U) = w (3.3) 

( h  and w arbitrary parameters) are exactly the ones for which U T  is independent of U. 
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The relations (3.2), (3.3) are associated with vector fields defined by ..-A( az JH az JH) +- - (3.4) -_ - az aH {=A--- " a z a ~  # = A - -  
d t  Ju dx du a t  ax ax a i  

and, hence, i / f  does not depend on U. 
Vice versa, if # / T  is independent of U, the characteristic system 

has an integral of the form (3.2), which is obtained by integrating the equation 
dx/dt=[/r .  (If Jr /ax=O,  that is, without lost of generality, if Z=I, the previous 
observations hold for the ratio F / l )  

In the direct method (3.2) is assumed to be the similarity variable; when (3.1) is 

Therefore, with the similarity variable and with the form (3.1) of similarity reduction, 

(3.6) 

On these grounds, finding the similarity solutions by the direct method is equivalent 

From the preceding section, this is equivalent to finding the similarity solutions 

aur-a-onrl :.r +_--I -F ..I ;+ ;- n ml-+in- - F + h e  CA*- I 2  21 L'"pc""c" 11. L C L . I I D  "L -. I, 1.7 EL L C I O I L . Y I I  "L ,.L* .Y.lll I-..-',. 

the direct method defines the quasilinear equation 

l u x +  iu, - 7 j  = o  
of which (3.1) is a general integral, and vice versa. 

to recognizing when (3.6) is~compatible with (2.1),  with & f, 
corresponding to non-classical symmetry groups of the form 

given by (3.4). 

# / T = f i ( t , X )  ? / T = h ( X ,  t, U). (3.7) 

u ( x ,  1) = m, t, W ( t ) )  

On the other hand, the special reduction form used by Lou [IO] 

is equivalent to determining the invariant solutions under non-classical groups with 
corresponding generators 

T = O  1 / # = f ( x ,  f ,  U). 

For a prescribed equation, the family of invariant solutions under non-classical 
groups is, in general, larger than that obtained with the CK method; in fact, it also 
contains the solutions corresponding to possible groups for which # / r  depends on U 
and the solutions corresponding to groups for which T = 0. 

For the Boussinesq equation all the non-classical symmetries with T = 1 have # / T  

independent of U. For this reason the family of invariant solutions determined in [4] 
coincides with the one obtained by CK. 

4. Burgers' equation 

To give an example, we consider the Burgers' equation 

U# + uu, f U, = 0. (4.1) 

By the direct method, Clarkson and Kruskal have obtained the general similarity 
reduction of the form [l]  

(4.2) 
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where e ( t )  and u(t)  are solutions of the equations 

d2u dOdu 
~ ~ - 2 - - = B s ( A u + 2 8 )  d t  dt dt ( $ ) 2  = Ae6+ ce4 (4.3) 

and O(t)  # 0. The corresponding equation for w is 

d2w dw 
dz2 dz 
-+ w - - A z  - 2 8  0. (4.4) 

In (4.3) and (4.4), A, B and C are arbitrary constants. 

f a =  (at + b ) x +  et + d 

and the non-classical symmetry groups, with generators defined by the system: 

Equation (4.1) admits the classical symmetry groups defined by the generators 

ro = at2+ 2bt + e qa= -(at + b ) u  +ax+  c (4.5) 

7 = 1  5.. = 0 7.. -25,. + Z ( U  - fk = O  (4.6) 
5x.x + ( 2 5 -  U)& -2716. + ft -2% - II (4.7) 

2%5+ U%+ qxx + 7, = 0 (4.8) 

(4.9) 

0 

or by 
.._ I_ 1 - 2 -  11-- I_ r - 2 - "  e = :  ' / x r T r /  , / " " T L l / l / y i T I / , T T /  -U. 

- - A  
I -" 

The system (4.6), (4.7), (4.8) is proposed also in Ames [ll], but solutions are 

f = d x ,  t ) u + S ( x ,  I )  (4.10) 

7 = 4 d P  - 1)u3+(Px+  & m u 2 +  Yl(X, t ) U +  Y 2 ( 4  0. (4.11) 

By a direct check of (4.7) and (4.8) the following three families of non-classical 
symmetry generators are defined: 

determined here for the first time. From (4.6), one deduces that 

dP q = - a u + x  -+2a2 +zap+- (dd; ) d t  

with a ( t )  and P ( t )  solutions of 

aexp  -2 a d f  =-+2u2 ( I  1:; 
dP  ( / )  d t  

cexp -2 u d t  =Zap+- 

(4.12) 

(4.13) 

(4.14) 

with a and c arbitrary parameters. 
(2) ( = U  T=1 q=o .  

(3) f = -4. +g,t'+g,t +g2 7=1 
, = a u 3 - 1  2u 2 (g0t2+g1t +g2)+ (got +Ig,)xu 

+(fa t  -ff:ju -ig,x'-hx +got + g3 

with g , , f ; f o  arbitrary parameters. 

the equation. 
Additionally, there exists a fourth family defined by (4.9) for any q which solves 
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In the following we examine the solutions which correspond to the first three 

(i) This family is the only one for which (/T does not depend on U. If we let 
families. 

O(f)=exp(-2 a dt)  u( t )=  - I p d t  

that is 

1 d u  p = - - -  1 dB 
e dt  0 dt 

a=--- 

then (4.13) and (4.14) become, respectively 

d u d 0  d2u e- 
d t  d t  d t 2 '  

- @4 = 3 - -- 

These equations admit the integrals 

and, therefore 
d u  _- - O'(d + c t ) .  
d f  

0 2 ( t )  = (a t2+2bf+  e)-' 

Then, it follows that 
a t + b  cf+d 

= a t Z + 2 b f + e  a =  
at2+2bt + e 

(4.15) 

(4.16) 

(4.17) 

Equations (4.15) and (4.16) are forms equivalent to (4.3): elimination ofthe parameters 
present in both equations results in the same system of equations of the third order 
on e ( t )  and u ( f ) .  The form (4.15) and (4.16) is more useful, because it allows solution 
by integration. 

The invariant similarity solutions under these non-classical symmetries are exactly 
the solutions obtained using the direct method of CK. 

It is also evident, from (4.17), that this family of non-classical symmetries results 
in the same solutions obtained by means of classical symmetries; in fact 6 = CQ/r0 and 
7 TO/ 

(ii) The associated characteristic system is 

dx du -=O. 
d t  d f  

U -= 

The family of invariant solutions is defined, implicitly, by 

x - u f - G ( u ) = O  with G = O  
n n A  rharnfnrm :+ :- n i v ~ n  hi, 
PI." LL.., . . I ."II  .L 10 6 . . . , l L  ", 

x +  h, 
u(x ,  1 ) = -  

t + h ,  

with h,, h,  arbitrary parameters. 



Similarity reductions of partial differential equations 2631 

Notice that these solutions are obtained also by the method of CK, when 
A = B = O ,  w=O,@(t )=l / ( t+h , )  and u(f)=ho/( t+h,) ,  since they are invariants 
underthesymmetries (4.12) with a ( t ) = l / ( t + h , )  andp( t )=h , / ( t+h , ) .  

(iii) Let us consider in detail the following three subcases: 

U3 
(iii.) [=  -? 2u 7 = 1  7 =4 

(iii.) The associated characteristic system is 

-2dx dt  4du  - -  
U 1 U ] '  

Let us assume z =  t + 2 ~ - ~  as the similarity variable, then the solutions are defined by 

u ( x + G ( z ) ) - ~ = O  

with G ( z )  a solution of G +  G" = 0. Therefore, they are 

4(x+a1)  
U =  

x2-2t+2xa, - a2 

with aI and a2 arbitrary parameters. 
Even this family of solutions can be obtained in a different way, using the direct 

method, when A = 1, B = C = 0,B2= ( - 2 1  - a2 - a:)-', U = a,B and considering the fol- 
lowing solution of (4.4) 

( z 3  + 5 2 )  w=- 
(zZ+ 1) ' 

(iii,) The associated characteristic system is 

-2dx dt  4 d u  -=_= 
U 1 u(u2-f2) '  

Let us assume z = [exp( -fx)( u +f)]/(u -f) as the similarity variable; the family of 
solutions is defined, implicity, by 

exp - u 2 - ( u 2 - f 2 ) G ( z ) = 0  (4.18) KO 
with G ( z )  a solution of 

Using the substitution (1/G) dG/dz =p. one obtains the Riccati equation 

(4.19) 

-+-P2+-p--=0 d p 1  1 1 
dz 2 z 2z2 
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The general integral of (4.19) is, therefore, 

bi(z+ b2), G(z)  = z 

Thus, we have the following three-parameter family of solutions to (4.1) 

u 2 e x p ( c )  -b, exp(fx)[(u+f) ex~(- fx)+b, (u- f ) ]~=O (4.20) 
\ - /  

and therefore 

These solutions cannot be obtained by the general form of CK. 
Differentiating (4.20) with respect to x and substituting for b,, we obtain 

U,= - b 2 e x p ( f x ) ~ ( ~ - f ) - ~ ( u + f )  
2(b2exp(fx)-1) 

(4.21) 

(4.22) 

This is the equation of which (4.20) is the general integral, considering t, f and b, 
as parameters. On the other hand, from (4.2): 

e’ 
e ~ , = e ~ ~ ~ - - ,  (4.23) 

Since (4.4) implies 

W ’ =  -qw2+fAz2+ZBz-D 

after substitution for equation (4.2), we obtain 

U, = P,u2 + P2u + P, (4.24) 
where 

(4.25) 

p - -1 

1 x d 0  1 d u  A02 1 d e  p,=-- --+-- +y (X0 C U ) ~ +  B02(x0 + U) - De2 -- -. 
2 0 df 8 d t  0 d t  

1-  2 

( ) 
Since (4.24) must coincide with (4.22), it follows that 

P3 = 0. 
f b2 exp(fx) + 1 and P2=- 
2 b, exp(fx) - 1 

(4.26) 

Looking at the series expansion in x, it is clear that there exists no choice of O ( f )  and 
U((), such that the two forms (4.25) and (4.26) corresponding to P2, are compatible 
for any x, J b, . 

Functions (4.21) are invariant solutions also under the non-classical symmetry with 
T = 0, 5 = 1 and 1) defined by the RHS of (4.22); thus they are obtainable with the special 
Lou case of the direct method with 

where w(t)=exp(f2r/4),  
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(iii,) The associated characteristic system is 

-2dx dt  4 d u  -=_= 
U-2g 1 u2(u-2g)’ 

Let us assume z = -x+2/u as the similarity variable, the family of solutions is defined, 
implicitly, by 

In (+) +2g - ug2(t  + H(z)) = 0 

with H ( z )  a solution of 

d H  
d2H dz’ (2)l dz 
-+g2 - -2g-+1=0 

(4.27) 

(4.28) 

therefore 

1 1 

g g 
H ( z )  =i In(z+c,) +-+ c2 

Thus, we have the following three-parameter family of solutions 

2(1 + g  exp(gx -g21 - c2g2)) 
x-c,+exp(gx-g?t-c,g’) ’ 

U =  

As in (iiib) these solutions cannot be obtained by the general reduction form (4.2). 
But they are obtainable by means of the special Lou case of the direct method with 

..,... , r ,  ,... ~./.,,- 2gw exp(gx)+2 
w exp(gx)+x-c, 

u ( x , l ] = u ( x , l , w ( I ] ) =  

where w(1) =exp(-g’(!+c2)). 

difficult. Substitution in (4.1) gives the relation 
We remark that determination of the solutions in the form U = U(x, 1, w(t)) is 

which implies the reduction condition 

U, + UU, + U, = r( W, t )  uw, 

( U ,  + UU,+ urx)xuw - ( U, + uu, + U,) U,, = 0. 

The U are then defined by the nonlinear equation 

5. Conclusions 

In this work we analyse the first of the questions posed by C K  in the concluding 
discussion [I]. We establish the relation between the direct method which they propose 
and the generalization of Lie’s classical method (Bluman and Cole [31) using non- 
classical symmetry groups. In fact, we demonstrate that there is equivalence between 
the two methods only for those groups such that the ratio f / r  of the generators is 
independent of U and T # 0. The detailed analysis of similarity solutions associated 
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with non-classical groups of Burgers' equation indicate the following result: the 
reduction method with non-classical groups has more general results, since there exist 
two classes of solutions that cannot be obtained by the direct method of CK. These 
solutions have the form of the special reduction proposed by Lou. 

In general we cannot claim that invariant solutions under non-classical groups with 
617 dependent on U are also invariant under groups with ( I T  independent of U or 
with T = O .  We can, however, conclude that the invariant solutions found under 
non-classical groups include those found via the direct methods. 

References 

[ I ]  Clarkson P A  and Kruskal M D 1989 1. Moth. Phyr. 30 2201-13 
[2]  Clarkson P A  1989 1 Phy& A: Moth Gen 22 2355-67 
[3] Clarkson P A  I989 J. Phys. A: Math. Gen. 22 3821-48 
[4] Levi D and Winternitz P 1989 J. Phys. A: Moth. Gen. 22 2915-24 
[ 5 ]  Bluman G W a n d  Cole J D 1969 1. Math. Mech. 18 1025-42 
[6 ]  Clarkson P A  and Winternitz P I991 Phyico 49D 251-12 
[7] Pucci E and Saccomandi G 1992 J. Moth. And. Appl. 163 588-98 
[8] Olver P and Rosenau P 1986 Phys. Len. 114A 107-12 
[9] Olver P J 1986 Application of Lie Groups of Diflerentiol Equations (Berlin: Springer) 

[IO] Lou S 1990 Phys. Lett. 151A 133-5 
[ I I ]  Ames W F 1972 Nonlinear Partial Differentid Equations in Engineering (New York Academic) 


